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Soft optoelectronic sensory foams with proprioception
I. M. Van Meerbeek1, C. M. De Sa2, R. F. Shepherd1,3*

In a step toward soft robot proprioception, and therefore better control, this paper presents an internally illumi-
nated elastomer foam that has been trained to detect its own deformation through machine learning techniques.
Optical fibers transmitted light into the foam and simultaneously received diffuse waves from internal reflection.
The diffuse reflected light was interpreted by machine learning techniques to predict whether the foam was
twisted clockwise, twisted counterclockwise, bent up, or bent down. Machine learning techniques were also used
to predict themagnitude of the deformation type. On newdata points, themodel predicted the type of deformation
with 100% accuracy and themagnitude of the deformation with a mean absolute error of 0.06°. This capability may
impart soft robots with more complete proprioception, enabling them to be reliably controlled and responsive to
external stimuli.
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INTRODUCTION
Since its inception, the field of soft robotics has advanced from one-
degree-of-freedom contractile actuators with open-loop control [i.e.,
McKibben artificial muscles (1, 2)] to active three-degree-of-freedom
mechanisms (3–7), devices with closed-loop control (8–10), and high-
force actuators (11, 12). Contemporary elastomeric machines can also
have both exteroception and proprioception through embedded strain
and pressure sensors (13–17), enabling them to sense and respond
to external forces (18). As elastomeric machines continue to grow in
complexity and as roboticists push the boundary of soft robot function-
ality, more sophisticated sensing will become necessary.

For a soft robot to robustly interact with its environment, it must
know its current shape in three dimensions (3D). To know its own
configuration, an inherently compliant system must be able to sense
deformation—whether it is self-induced through actuation or exter-
nally inflicted. The most commonly used sensors in soft robots are
either surface mounted for pressure and touch detection (14, 17, 19, 20)
or embedded along neutral bending axes to measure the global cur-
vature of a robot limb (8, 21–23). These types of sensors are typically
integrated to measure a specific type of deformation (e.g., pressure at
a certain point and bending along a certain axis), which limits the
information that they can give about a robot’s configuration. To fully
know a soft robot’s shape, we may need to fabricate sensors that can
detect arbitrary deformations; however, it may suffice to pattern high
densities of currently available sensors and either derive a complex
analytical model or apply machine learning (ML) techniques. Such
an approach has been used on sensor systems to fabricate devices
such as a gesture recognition device, a pressure sensor, and a robotic
skin (24–27). In a step toward soft actuator proprioception, we present
an elastomeric foam that can sense macroscopic deformation via em-
bedded optical waveguides and the use of ML and statistical techniques
to interpret transmitted light intensities.

Here, we present an elastomeric foam sensor system that we have
trained to sense when it is being bent and twisted. To achieve this goal,
we embedded an array of optical fiber terminals into the base layer of an
elastomeric foam (Fig. 1). The fibers served to illuminate the foam and
to detect diffuse reflected light.We bent and twisted the foam to known
angles and gathered the intensity of the diffuse reflected light leaving
each fiber. To producemodels that predict the foam’s deformation state
from the internally reflected light, we appliedML techniques to the data
(Fig. 2 and movie S1). We chose to use ML instead of deriving a theo-
retical model, because doing the latter would have been very difficult
given the large number of independent variables, many of which
would have been difficult to accurately measure. Those independent
variables include foam porosity, foam geometry, strut geometry,
optical fiber placement, optical fiber terminal orientation, refractive
index of the silicone, loss of the optical fibers, and absorption of the
silicone. Diffusing wave spectroscopy (DWS) in cellular and colloidal
substances has been used previously to gather information about mi-
crostructural statistics (28); however, this technique does not yield
macroscopic shape specificity and has not been applied to robotics.
Fig. 1. Foam assembly design. (A) Left: Foam and optical fiber assembly in
three stages of fabrication. Right: Cross section of foam and optical fiber
assembly in three stages of fabrication. (B) Diagram of foam and optical fiber
assembly.
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We combined this platform of DWS with ML to create a soft robotic
sensor that can sense whether it is being bent, twisted, or both and to
what degree(s).

To detect sensor deformation, we selected and evaluated two
distinct approaches. The first approach used single-output classification
to detect whether the sensor was being bent or twisted, followed by
single-output regression to predict the magnitude. This approach
allowed us to detect one deformation mode at a time. The second ap-
proach enabled us to detect bending and twisting simultaneously by
using multi-output regression. To model the foam’s state for the first
approach, we defined two variables: deformation mode and angle.
Deformation mode is a categorical variable that can hold one of the
following four values: bend positive, bend negative, twist positive, or
twist negative. Angle is a real-valued number corresponding to the
magnitude of the bend or twist experienced by the foam. By using the
values of deformation mode as training data labels, we trained a
single-output categorical model to predict the type of deformation.
Then, by using the values of angle as training data labels, we trained
four single-output regression models (one for each deformation mode)
to predict themagnitude of the deformation after the deformation had
been categorized. We compared three classifiers [k-nearest neighbors
(kNN), support vector machines (SVMs), and decision trees] and six
regression models [kNN, SVMs, decision trees, Gaussian processes
(GPs), linear models, andmultilayer perceptrons (MLPs; also known
as neural networks)]. The best classifiers had a test error rate of 0,
and the best regression models had a test mean absolute error of
0.06°. For the second, multi-output approach, we modeled the foam’s
Van Meerbeek et al., Sci. Robot. 3, eaau2489 (2018) 28 November 2018
state as a 2D vector of real-valued numbers representing the bend
and twist angles experienced by the foam. With this label format, we
trained a multi-output regression model to predict the bend and twist
angles simultaneously. We compared three multi-output regression
models—kNN, linear models, and MLPs—and found that the best
model had a test mean absolute error of 0.01°.
RESULTS
Model performance on test data
We trained each single-output classifier on a training dataset of 2020
observations. We evaluated their performance on a set of 290 unseen
observations. In both datasets, the range of bend angles was −80° to
90° and the range of twist angles was −82° to 90°. These bounds
represent the physical limits of our testing apparatus. Of the classifiers
tried, the kNN and SVMmodels performed best with a classification
test error rate of 0. To predict the magnitude of the deformation mode,
we partitioned the training dataset by deformation mode and trained
one regression model for each partition (four total models). We re-
peated this process for each of the six regression models that we
wanted to compare. The kNN regression model had the lowest mean
absolute error of 0.06°. Tables 1 and 2 display the full results of these
evaluations. We qualitatively demonstrated one of the composite
model’s performances by deforming the sensor in real time and display-
ing a geometric reconstruction of the foam’s deformation state based on
themodel’s predictions (movie S1). The predictionmodels used for this
demonstration were the kNN classifier and the GP regression model.
Fig. 2. Sensor functionality. (A and B) Optical fiber terminals from which light
intensity is read. (C to E) Real images of deformed foam and optical fiber
assembly. (F to H) Real images of deformed foam and optical fiber assembly
overlaid with computer reconstruction of the assembly’s state.
Table 2. Single-output regression model errors. Mean absolute errors
for each deformation mode. CW, clockwise; CCW, counterclockwise.
kNN
 GPs
 MLPs
 SVMs
 Tree
 Linear
Bend up
 0.07
 1.59
 1.74
 3.10
 5.02
 6.50
Bend down
 0.08
 1.88
 2.72
 2.92
 5.25
 8.92
Twist CW
 0
 1.81
 2.36
 1.98
 4.50
 5.87
Twist CCW
 0.07
 2.05
 2.39
 3.27
 4.43
 5.92
Mean
 0.06
 1.83
 2.30
 2.82
 4.80
 6.80
Table 1. Classifier model error rate. Error rates of the classification
models.
kNN
 SVMs
 Tree
0
 0
 0.05
Table 3. Multi-output regression model errors. Mean absolute errors.
kNN
 MLPs
 Linear
0.01
 1.43
 13.9
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The multi-output regression models were trained on a dataset of
956 observations. To evaluate their performance, we gathered a test
dataset of 239 observations, and of the models tried, kNN performed
best again, with a mean absolute error of 0.01° on the test dataset. Table 3
displays the full results for these trials. In machine learning, model
parameters are thosewhose values are set during training (i.e., learning).
Some examples are the slope and intercept for a linear model or the
hyperplane and margin size for SVMs. A hyperparameter, by contrast,
is a parameterwhose valuemust be set before training.Hyperparameters
help define the structure of the model being used. An example is the
number of hidden layers in an MLP (i.e., neural net). For both single-
output and multi-output models that had hyperparameters, we opti-
mized them by using random search (29). All reported values come
from the best hyperparameter sets that we found. Table S1 displays
the hyperparameters that we used for each model.

Cross-validation
To assess how well our models would perform on new data, we per-
formed nonexhaustive, k-fold cross-validation (30). Cross-validation
is a method used to estimate model error on unobserved data by
splitting the available data into subsets for training and subsets for
evaluation. In k-fold cross-validation, the available data were ran-
domly partitioned into k evenly sized subsets. Next, we reserved
one subset for evaluation and trained a model by using the union
of the remaining k − 1 subsets. We repeated this process for each
subset—k times—such that k models were trained and evaluated.
The errors of the kmodels on their corresponding validation sets were
estimates of the test error of a model trained on the entire dataset. The
variance between the kmodels indicates how much model error varied
Van Meerbeek et al., Sci. Robot. 3, eaau2489 (2018) 28 November 2018
with the training data. The results of the k-fold cross-validation are
displayed in Fig. 3.We found that the models had low error, indicating
a likelihood of low test error. Most of the models also had relatively
little variance, suggesting that they did not depend heavily on the
training data used. With this knowledge, we created our final models
using all the gathered data as training data.

Training data size
To determine how many training observations (n) were required to
obtain useful models, we took increasingly smaller subsets of the
training data and generated new models based on those smaller
training datasets. For single-output prediction, an exhaustive search of

all possible training data subsets would have required∑2020

i¼1
2020
i

� �
¼

∑2020

i¼1
2020!

i!ð2020�iÞ!≫10307 trials for each predictionmodel (three classifiers

and six regressionmodels).We did not have the computational capacity
to do the exhaustive search; therefore, for each model, we performed
300 trials for 19 different subset sizes each, for a total of 9 models ×
300 trials × 19 subset sizes = 51,300 trials, whichwas the number of trials
that our machine could process in 10 hours (e.g., overnight). The MLP
trials took about 20 times longer; therefore, we performed only 15 trials
for each subset size. We evaluated each trial’s model on the test dataset
(290 data points). We performed a similar process for the multi-output
prediction models.

As is typical, we found that, as the number of training observa-
tions increased, model performance improved (Fig. 4). The kNN
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Fig. 3. Results from k-fold cross-validation. Error bars represent SD across the k
models.
Fig. 4. Effect of training data size. Classification and regression performance on
test data as a function of training data size. Each plot point represents the mean
across random trials, and the error bars represent SD across 300 trials (15 for
MLPs). Classification error is 0-1 loss.
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classification error rate remained below 0.01 for models trained on
datasets as small as 56% of the original training dataset size, and the
single-output kNN regression mean absolute error remained below
1.0° for models trained on sets as small as 62% of the original training
set size. The multi-output kNN regression mean absolute error also re-
mained below 1.0° for training datasets as small as 75% of the original
set. Formostmodel types, the error appears to be approaching a plateau
at the maximum training data size that we used, suggesting that the
performance of our largest training dataset may be slightly, but not
greatly, improved by collecting more data.

Feature set size
To determine the relationship between model performance and optical
fiber detector density, we removed randomly generated subsets of
features (i.e., fiber intensity data) from the training and test data.
We trained and evaluated new models by using the modified training
and test data. The complete, unmodified training data had a feature set
size (d) of 30 (for the 30 fibers). To exhaustively search all possible fea-

ture subsets, we would have needed to generate and test∑30

i¼1
30
i

� �
¼

∑30

i¼1
30!

i!ð30�iÞ! ≈ 1:07� 109 models for each of the models that we com-

pared. We did not have the computational power for these many trials;
therefore, for each feature set size, we randomly selected a quantity of
subsets equal to the smaller of 300 and the maximum number of pos-
sible subsets for that feature set size (d-choose-f where f was the size of
the feature subset). Again, we chose this number of trials based on a
Van Meerbeek et al., Sci. Robot. 3, eaau2489 (2018) 28 November 2018
computation time of 10 hours, and the number ofMLPs tested for each
feature set size was reduced to 11 because of its greater runtime.

Figure 5 displays the full results for this experiment. We found
that the single-output kNN classification error remained below 0.1 for
feature set sizes as small as 10 and that the kNN regression model error
remained below 1.0° for feature set sizes as small as 12 fibers. Themulti-
output kNN regression error remained below 1.0° for models with as
few as nine fibers (i.e., features). These results suggest that our system
could be redesigned to have as little as a third of the reported fiber den-
sity, which could be useful when designing a full soft robot embedded
with this sensing system.

To determine whether certain fibers affected model performance
more than others, we conducted another experiment in which we
removed fibers and then trained and tested new models. For this ex-
periment, however, instead of randomly removing subsets of fibers,
we searched for the fiber that, when removed, produced amodel with
the highest test error and removed it from the data. We repeated this
process until four fibers remained. Figure S1 shows these results
plotted with the results from the randomly removed feature subsets
for eachmodel.We found that greedily removing fibers from the data
produced slightly better models than randomly removing fibers, sug-
gesting that some fibers affect error slightly more than others.
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DISCUSSION
In general, MLmodel error can have threemain causes: (i) The training
data may not fully represent the unobserved data, (ii) the data may be
noisy, and (iii) the model assumptions may be incorrect (e.g., assuming
that the data are linear when they are not). The cross-validation results
displayed in Fig. 3 show that our models had relatively low variance,
indicating that the training data may represent the full space well. The
mean signal-to-noise ratio of all fibers (signal mean divided by the SD
of the noise) is 185, and when we propagated the signal noise through
our models, we found little to no change in model prediction. Given
the low cross-validation variance and limited effect of noise on predic-
tion, the main contributor to model error in our experiments may be
incorrect model assumptions (i.e., model bias). If model bias is the
main contributor to prediction error, then kNN’s lower average error
across all trials may be due to it having the best model assumption of
themodels that we compared (i.e., similar inputs have similar outputs).
In addition, kNN has been shown to have lowmodel bias. Cover and
Hart (31) showed that, as the training data size approaches infinity,
for k = 1, kNN error is no more than twice the error of the best pos-
sible classifier.

kNN’s lower error may make it the most effective model for this
application; however, there are other factors to consider. The cross-
validation results show that some models had lower variance than
others. Specifically, the kNN, GP, and SVM test errors varied little be-
tween training datasets, while the MLPs and Tree models in particular
showed much more variation. If the training data are limited for some
reason, then one may want to pick the models with lower variance. One
may also consider the evaluation time. Table S2 shows themean time to
evaluate one observation for eachmodel. Although kNNmodels can of-
ten have slow evaluation times when the training set is large, since the
training sets in this research remained small, the evaluation times were
the same order of magnitude as most of the other models. Given that
kNN showed desirable traits regarding error, variance, and evaluation
speed, it stands out as one of the most useful models in this application.
For a robotics system that makes decisions based partly on prediction
Fig. 5. Effect of feature set size. Classification and regression performance on
test data as a function of feature set size. Each plot point represents the mean across
random trials, and the error bars represent SD across 300 trials (11 for MLPs).
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confidences, however, the GPmodel could be the most useful because it
outputs predictions and confidence values for each prediction.

Several studies examining human proprioceptive capability
through limb-matching tasks have found that wrist, finger, and elbow
joint angle absolute errors lie between 1° and 12° (32–36). In particu-
lar, proprioception of the proximal interphalangeal joint angle has an
absolute error between 4° and 9° (36). These results suggest that this
level of error in proprioception is acceptable for tasks such as writing
and reaching for objects. Given that the human index finger is on aver-
age 82mm in length (37, 38) and that our sensor is 80mm in length, we
can loosely compare the performance of our sensor to that of the
proximal interphalangeal joint on the human index finger. Scientists
have shown that the proximal interphalangeal joint is located at about
the midpoint of the finger (38); therefore, a joint angle error of 4° to 9°
corresponds to a fingertip position error of 3 to 6mm. Given the geom-
etry of our sensor’s measured bending angle (Fig. 6), the mean bend
error obtained by, for example, the GP models (1.74°) corresponds
to an error of about 2 mm in the position of the sensor’s movable
end. The kNN regression model has a smaller bend error, which
corresponds to an even greater accuracy. With this comparison, we be-
lieve that our foam sensor system has the potential to greatly improve
soft robotic control.

To apply this system to a soft robot, one would need to design the
integration of optical fibers into the soft actuators. They would also
need to integrate the illumination and detection devices. We used a
large illuminator and a camera; however, the illuminator could be re-
placed with light-emitting diodes, and the camera could be replaced
with photodiodes. The beam splitter setup could be miniaturized or
removed; removing the beam splitter would require the number of
embedded fibers to be doubled. We chose not to do these integrations
becausewewanted to keep the system fabrication simple and highlight
the performance of the prediction models rather than the engineering
Van Meerbeek et al., Sci. Robot. 3, eaau2489 (2018) 28 November 2018
challenges. To remove ambient light interference, we would also need
to use an optically opaque elastomer skin. We did not do this here to
facilitate troubleshooting. Last, one would need to design a mount for
the robot to gather accurate data for the ML models.

Our current system detects four deformation modes; however, we
believe that other deformation modes could be added as needed. We
also suspect that, with more sophisticated ML techniques, the sensor
system could detect deformations that were not predetermined by the
experimenters. Further research will investigate this possibility to
achieve arbitrary deformation detection in soft robots.

We have seen in biology (39–41) and in engineering (42, 43) that
more complete and accurate sensing enables better control. This work
is a step towardmaking soft robots more reliably controllable andmore
responsive to their environment. With this kind of sensing capability,
soft robots could protect themselves by responding to excessive defor-
mation. Walking soft robots could improve their locomotion by
learning better walking gaits through proprioception. In addition, they
could relearn to walk after experiencing limb damage.

We present an optical robotic device that can sense multiple defor-
mation types without sensors that have been specifically patterned for
each type. Although the deformation classification is limited to four
modes (i.e., bend positive, bend negative, twist positive, and twist
negative), we hypothesize that this method could be used for many
deformation types. We also believe that classifying arbitrary deforma-
tion may be possible with more sophisticated ML techniques.
MATERIALS AND METHODS
Research objectives and design
Our objective is to demonstrate that elastomeric foam (and by
extension, robotic elastomeric foam actuators) can be imparted with
proprioception through optical sensing and the application of basic
ML and statistical methods. To make the work accessible, we chose a
readily available, soft lithography process to fabricate the sensor system
and implemented commonly built-in ML algorithms.

Sensor design and fabrication
We wanted the sensor system to be easily integrated into a soft robotic
actuator; therefore, our sensor design is identical to that of our previously
Fig. 7. Gathering data. (A and B) Real images of foam and optical fiber assembly
during deformation in darkness. (C) Schematic of training data collection process.
Fig. 6. Experimental setup. (A) Bird’s eye view of experimental setup. (B) Dia-
gram illustrating how each fiber serves as an illuminator and light detector via a
beam splitter.
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published soft foam actuators (3, 44): We fabricated an open-cell, lost
salt silicone foam block, which we embedded with optical fibers and
sealedwith a solid silicone skin. This fabrication technique can be used
to create 3D shapes, which makes this work generalizable to other soft
mechanisms.We chose optical sensing because, unlike its resistive and
capacitive counterparts, it requires no embedded electronics, can sam-
ple a large volumewith fewprobes, and isminimally affected by changes
in temperature. For the embedded optics, we used plastic optical fibers
with radius r ≈ 0.25 mm (www.thefiberopticstore.com), which expe-
rience low loss (G < 0.25 dBm−1 for l≈ 650 nm) and can be used both
to illuminate and to detect light scattered in the foam. Plastic optical
fibers can also be thermally shaped, which facilitates fiber terminal
placement inside the foam. The input light came from a constant
output, visible light source (115 V; MI-150 Fiber Optic Illuminator,
EdmundOptics) to enable consistent results and to facilitate trouble-
shooting, respectively. For manufacturing simplicity, we used a camera
(EO-13122C Color USB 3.0, Edmund Optics) to detect the diffuse re-
flected light exiting the fibers.

We used soft lithography to fabricate the sensor, which allowed us to
pattern the optical fibers as a layer of the fabrication process. Becausewe
selected silicone rubber as the basematerial, the sensor can achieve high
extensibility and experience little hysteresis. In addition, silicone comes
in a large range of elastic moduli, enabling the generalization of our
design to a variety of applications. We chose Smooth-On’s Ecoflex
0030 specifically for its translucence and low tangentmoduli, facilitating
internal illumination and enabling large deformations for small forces,
respectively. We fabricated the optical foam assembly by first thermally
forming optical fibers to form a planar array of fiber terminals and then
casting and curing silicone rubber around those fibers (Fig. 1A, top).
Next, we casted a mix of table salt and uncured silicone on top of the
exposed fiber terminals, allowed the silicone to cure, and then dissolved
the salt out in water (Fig. 1A, middle). In the last soft lithography step,
we sealed the foam with solid silicone skin (Fig. 1A, bottom). For re-
producible training, we mounted one end of the optical foam into a
bending and twisting apparatus and mounted the other end to a rigid
post (Figs. 2 and 6A). Using a 3D printed (Objet30 Scholar, Stratasys
Inc.; VeroBlue material) connector and epoxy, the loose fiber terminals
were directed into a chamber containing a beam splitter (50R/50T Plate
Beamsplitter, EdmundOptics).We also pointed the illumination source
and the camera into the beam splitter chamber in a configuration that
separated the light entering the fibers from the reflected diffuse light
exiting the fibers (Fig. 6B).

Experimental design
Model selection
One way to reconstruct the shape of a deformed elastomeric foam by
using the waveguide output intensities would be to derive a complete
theoretical model of the system. To effectively achieve this goal, however,
we would at minimum need accurate dynamic models of the complex
interactions among features such as foam porosity, strut size, strut
shape, refractive index, absorbance, reflectivity, input light wavelength,
optical fiber position, and optical fiber orientation. In the absence of a
complete and accurate theoretical model, we used ML and statistical
techniques to generate our models. We compared several ML models,
all of which can be implemented using built-in software packages. We
chose to useMATLAB to facilitate transferring of data from the camera
to the predictionmodels, and to implement the differentML techniques,
we used the following toolboxes: Statistics and Machine Learning
Toolbox, Curve Fitting Toolbox, and Deep Learning Toolbox.
Van Meerbeek et al., Sci. Robot. 3, eaau2489 (2018) 28 November 2018
ML implementation
To gather data, we covered the optical setup (Fig. 6) to avoid inter-
ference due to changes in ambient light. With the illuminator on, we
deformed the foam to a known bend or twist angle, saved an image of
the fiber terminals, calculated the average intensity of each fiber
terminal, and saved those scalar values in a vector of length 30. For
single-output prediction, we repeated this measurement 2020 times
for bend and twist angles in the range −80° to 90° and −82° to 90°,
respectively, resulting in a feature matrix, X, of dimension 2020 by
30 and in a label matrix, Y, of dimension 2020 by 2 (Fig. 7). The first
column of Y held the values for deformation mode, and the second
column held the values for angle. We gathered 290 test data points in
the same manner. For multi-output prediction, we repeated the above
process to gather 956 training data points and 239 test points.

To train the categorical classifiers, we used the built-in MATLAB
functions fitcknn for kNN and fitcecoc for both SVMs and the decision
tree. To train the regression models, we grouped the training data by
deformation mode and then generated four regression models—two
for each deformation mode using the built-in MATLAB functions
knnsearch for kNN, fitrsvm for SVMs, fitrtree for the decision tree,
feedforwardnet and train for MLPs, fitlm for the linear model, and
fitrgp for GPs. To train the multi-output models, we used knnsearch
for kNN, feedforwardnet and train for MLPs, and mvregress for the
linearmodel. For eachmodel, we performed a random hyperparameter
search to find the bestmodel. Table S1 displays the best hyperparameter
sets found by our search.
SUPPLEMENTARY MATERIALS
robotics.sciencemag.org/cgi/content/full/3/24/eaau2489/DC1
Fig. S1. Random versus greedy feature removal.
Table S1. Model parameters for best prediction models.
Table S2. Model evaluation times.
Movie S1. Real-time deformation prediction.
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